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Short Communication 
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Angelo Rafael Bini b, Ricardo Antônio Ayub c, Maria Isabel Stets a, Leonardo Magalhães Cruz d, 
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A R T I C L E  I N F O   

Keywords: 
Plant growth-promotion bacteria 
Bacteria colonization 
Azo-2 
16S rRNA 
Soil microbiology 

A B S T R A C T   

Although Azospirillum brasilense is used in many inoculant formulations, information of its prevalence under field 
conditions is still scarce. In this work, we inoculated A. brasilense AbV5/AbV6 (2 × 108 CFU ml− 1) on maize seeds 
and then evaluated its colonization profile throughout seventy-five days after seeding (DAS) in a field assay. The 
abundance of total bacteria and A. brasilense on the seed, root and soil rhizosphere were determined by qPCR 
using 16S rRNA and species-specific primers, respectively. A. brasilense was detected in soil at a concentration of 
105 CFU g− 1 of soil only until radicle emergency. From the fifth day onwards, it was detected at the roots in a 
concentration of 103 to 105 CFU g− 1 of fresh root. Our results provide a sensitive approach to monitor 
A. brasilense in a field trial and reveal new information on the ecology of maize and A. brasilense association.   

1. Introduction 

Azospirillum is the most studied genera of the plant growth- 
promoting rhizobacteria (PGPR), being considered a model organism 
to understand bacterial-plant interactions (McMillan and Pereg, 2014; 
Pedrosa et al., 2019). It has the capacity to associate with approximately 
113 species of plants, distributed within 35 botanical families, including 
14 species of cereals (Pereg et al., 2016). Azospirillum inoculation pro-
motes yield increase in 70% of the trials and Azospirillum is used in the 
formulation of at least 104 different inoculants fabricated in South 
America (Cassán and Díaz-Zorita, 2016). In Brazil, more than 9 million 
doses of A. brasilense AbV5/AbV6 were sold in 2018. These are the most 
commonly used strains in commercial formulation in this country 
(Anpii, 2019). 

Azospirillum is inoculated in furrow, via soil or leaf spray, on the roots 
or seed surface. The latter is the most used method in agriculture, mainly 
due to its feasibility in application, and the reduced amount of inoculant 
required (Bashan and de-Bashan, 2015). The ability of inoculated PGPR 
to colonize plant roots depends on its exudates production, the soil 
characteristics and the native microbiome (de Souza et al., 2015; Sasse 
et al., 2018; da Costa et al., 2018). Although PGPR are commonly 
applied in agriculture, information about the prevalence and 

colonization of inoculated bacteria under field conditions is still scarce 
(Rilling et al., 2019). Threshold number of cells is shown to be critical to 
obtain positive plant responses (Bashan et al., 2014). Monitoring PGPR 
under field conditions by traditional microbiological methods is a 
challenge because the growing media are semi-selective and with low 
efficiency to detect bacteria from non-dominant populations. Up to now, 
few studies have described molecular methods to detect Azospirillum but 
qPCR appears to be the most sensitive (Couillerot et al., 2010a; Lin et al., 
2011; Shime-Hattori et al., 2011; Faleiro et al., 2013; Stets et al., 2015; 
Priya et al., 2016; Maroniche et al., 2017). The only three published 
works that monitored A. brasilense strains using qPCR were carried out 
under controlled laboratory conditions and for a maximum of thirteen 
days after inoculation (Couillerot et al., 2010a; Faleiro et al., 2013; Stets 
et al., 2015). The development of specific methodologies for A. brasilense 
quantification in inoculated soil, rhizosphere, seeds or plant tissues 
samples are necessary not only to track this biofertilizer in its natural 
environment but also to evaluate its functionality. In this study, we 
quantified A. brasilense AbV5/AbV6 using qPCR method throughout 
seventy-five days after sowing in a field maize crop, and observed the 
effect of inoculation on maize yield. 
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2. Material and methods 

2.1. Site description 

The experiment was performed in summer 2017, on an Oxisol 
(clayey, kaolinitic, thermic Rhodic Hapludox) under a long-term 
continuous no-till system in Ponta Grossa, PR, southern Brazil (25◦13′

S, 50◦07′ W). According to Köppen-Geiger System (Peel et al., 2007), the 
climate is Cfb (mesothermal, humid, subtropical), with mild summer 
and frequent frosts during the winter. The average altitude is 830 m with 
average maximum and minimum temperatures of 28 and 17 ◦C, 
respectively, and 72–304 mm of rainfall during the experiment. 

2.2. Experimental design and cultural treatments 

A randomized complete block design was used, with three replicates 
plots. Maize seeds (hybrid DKB 230 PRO3®, Dekalb) were treated with 
an A. brasilense AbV5/AbV6 commercial inoculant (2 × 108 Colony 
Forming Unit – CFU kg− 1 of seed). All plots received 45 kg of N ha− 1 as 
urea at sowing and extra doses (80 and 240 kg of N ha− 1) in V4 physi-
ological state; N treatments were only used for maize yield analyses but 
not for A. brasilense AbV5/AbV6 quantification. The effect of 
A. brasilense inoculation on maize productivity was determined by grain 
yield evaluation of inoculated and uninoculated plots. 

2.3. Samples collection and DNA extraction 

At the following maize physiological states: 1; 5; 7; 9; 11; 13; 15; 20; 
25; 35; 45; 75 days after sowing (DAS), six maize plants were randomly 
collected from each of the three plot replicates, avoiding root damage. 
Therefore, eighteen plants were used to obtain each plant composite 
sample of inoculated treatments. Before starting experiment, twelve 
samples of the bulk topsoil (0–10 cm) were randomly collected and 
mixed to obtain a control composite sample and at 7 DAS, plants from 
uninoculated plots were also collected as mentioned above to form 
another control. The samples were transported under refrigeration for 
processing at the laboratory. 

Rhizospheric soil and roots were processed as described by Couillerot 
et al. (2010b) with some modifications. Briefly, the composite sample 
was shaken vigorously to remove the adhered bulk soil from the roots, 
then, the roots were placed in a beaker, covered with sterile distilled 
water, and shaken for 15 min at 160 rpm in an orbital shaker (New 
Brunswick Scientific Classic, C25KC). Then, the roots were removed, 
washed with sterile distilled water, and manually ground with mortar 
and pestle. The remained solution was centrifuged at 5500 ×g for 10 min 
to recover the precipitated rhizospheric soil. 

Soil and root DNA was extracted using PowerSoil DNA isolation kit 
and DNeasy PowerPlant Pro kit (MOBIO Laboratories, Inc.) respectively, 
as recommended by the manufacturer. Finally, the DNA was quantified 
in NanoVue™ Plus (GE Healthcare Life Sciences) and stored at − 20 ◦C. 

2.4. qPCR assay 

Real-time qPCR quantifications were performed in technical tripli-
cate and each run was repeated three times in Lightcycler® Nano Roche 
thermocycler (Roche Applied Science). Replicates with Cq differences of 
more than 0.5 cycles were not considered. Each qPCR reaction consisted 
of 10 μl of FastStart Essential DNA Green Master (Roche Applied Sci-
ence), 1 μl of each primer (10 pmol μl− 1), 0.5 μl of BSA (10 mg ml− 1 

BioLabs), 20 ng μl− 1 of DNA, and water to complete the 20 μl volume. 
Primers Azo-2F and Azo-2R (Stets et al., 2015) were used for A. brasilense 
species-specific quantification, and the 16S rRNA primers 341F and 
534R (Bru et al., 2008) were used for all bacteria quantification. An 
average of 4.2 copies of the 16S rRNA gene per genome (Větrovský and 
Baldrian, 2013) was used to convert absolute gene copy number into 
CFU. 

The cycling program included 10-min incubation at 95 ◦C followed 
by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 20 s, and one cycle of 72 ◦C for 20 
s. Melting curve analysis of the PCR products were performed to verify 
reaction specificity using LightCycler® Nano Software 1.1 (Roche 
Applied Science). Additionally, all products were analyzed by electro-
phoresis in 2% TBE agarose gel stained with ethidium bromide (0.5 mg 
ml− 1); for Azo-2 and 16S rRNA primers, fragments of 90 bp and 174 bp 
were expected, respectively. 

Standard curves were constructed following Couillerot et al. (2010b) 
with some modifications, 300 g of uninoculated bulk soil was autoclaved 
three times at 120 ◦C for 50 min, and then, seven samples of 250 mg 
were placed in extraction tubes (PowerSoil DNA isolation kit – MOBIO 
Laboratories, Inc.) with a 10 fold dilution series ranging from 2 × 108 to 
2 × 102 CFU ml− 1 of A. brasilense AbV5/AbV6 from a commercial 
inoculant, and incubated for 1 h at 4 ◦C, to guarantee the interaction 
between soil particles and bacteria. Finally, DNA was extracted as rec-
ommended by the manufacturer. DNA was quantified in NanoVue™ 
Plus (GE Healthcare Life Sciences) and stored at − 20 ◦C. The standard 
curves followed the technical recommendations described by Burns 
et al. (2005) and presented parameters (Table 1) accepted by literature 
(Bustin et al., 2009; D’haene et al., 2010; Svec et al., 2015). 

2.5. Statistical analysis 

Data were compared by the Tukey test (P < 0.5) using the packages 
Agricolae (de Mediburu, 2019) and Laercio (da Silva, 2015) in software 
R version 3.4.1 (R Core Team, 2013). 

3. Results and discussion 

It is estimated that the number of bacterial species per gram of soil 
varies between 2 × 103 and 8.3 × 106 (Gans et al., 2005; Schloss and 
Handelsman, 2006) and that approximately 105 CFU of A. brasilense is 
necessary for successful seed colonization (Okon and Itzigsohn, 1995). 
Based on the limit of detection (LOD) ranging from 2 × 103 to 2 × 108 

CFU of A. brasilense g− 1 of soil or root (Table 1), the qPCR quantification 
using Azo-2F/Azo-2R primers showed to be an effective method for 
tracking A. brasilense AbV5/AbV6 on crop fields. 

3.1. Azospirillum brasilense behavior in the field conditions 

Throughout the seventy-five days of maize growth evaluation, 16S 
rRNA gene qPCR analysis showed that the number of total bacteria 
remained constant in the soil and roots, around 107 CFU g− 1 of soil or 
roots, while the A. brasilense AbV5/AbV6 population changed (Fig. 1). 

As soon as radicle was formed, A. brasilense AbV5/AbV6 could be 
detected attached to it. At five to seven DAS, 105 CFU of A. brasilense 
AbV5/AbV6 were detected per gram of fresh roots and at eleven DAS, it 
decreased to 103 CFU g− 1 of fresh root (Fig. 1). This decrease might be 
explained by the formation of post-embryonic shoot-borne roots or 
nodal roots (Hochholdinger, 2009), which make up most of the maize 
root system and are responsible for nutrient acquisition later in devel-
opment (Hoppe et al., 1986). Azospirillum has an affinity for the new 
elongation root zone (Burdman et al., 2000; Santos et al., 2017a; Santos 
et al., 2017b) and it is possible that a broad portion of A. brasilense 
AbV5/AbV6 cells were in the process of migration to the new root node 
in formation. The formation of definitive nodal roots might have 
contributed to the stability of the A. brasilense AbV5/AbV6 population, 

Table 1 
Parameters for Azo-2 and 16S rRNA primers obtained from standard curves.  

Primer E (%) R2 slope Tm (◦C) LOD (CFU g− 1 of soil) 

Azo-2 100.8 0.98 − 3.28 85 2 × 103–2 × 108 

16S rRNA 102 0.98 − 3.18 85 2 × 104–2 × 108 

E: Efficiency. Tm: Melting temperature. LOD: Limit of detection 
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since from thirteen DAS to the last day of evaluation (75 DAS) it 
remained at 104 CFU g− 1 of fresh root. 

On the other hand, A. brasilense AbV5/AbV6 were only detected at 

the soil in the first DAS at a concentration of 105 CFU of A. brasilense 
AbV5/AbV6 per gram of soil (Fig. 1). From the fifth day onwards, it was 
not possible to detect it by qPCR indicating that the population was 

Fig. 1. Detection of total bacteria and A. brasilense AbV5/AbV6 in maize rhizosphere or root throughout its physiological cycle, from sowing to tasseling (VT). The 
indicated log CFU values were obtained from the maize root samples except at one DAS (tagged with an asterisk), in which values are from soil near to the inoculated 
seeds. The CFU of total bacteria was estimated by the absolute 16S rRNA gene copy number divided by an average of 4.2 copies per genome. The CFU of A. brasilense 
AbV5/AbV6 population, by itself, was estimated by the absolute number of copies of an specie-specific region of its genome, monitored by using a specific couple of 
primers. Data represent the mean of three separated runs and its triplicates for each day. Values followed by the same letter were not statistically different (Tukey p ≤
0.05). Means of rainfall during experiment time are indicated in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 2. A. brasilense detection in rhizospheric soil of inoculated maize plants collected five days after sowing. A) Melting curve of the qPCR amplification. Green line 
= positive control (A. brasilense DNA extracted from commercial inoculant); blue line = unspecific products of rhizospheric soil sample at five DAS. B) Products of 
qPCR observed by electrophoresis in 2% TBE agarose gel stained with ethidium bromide (0.5 mg ml− 1). Lane 1–1500 bp ladder (Sinapse Inc); Lanes 2 and 3 – qPCR 
products of rhizospheric soil sample at five DAS. Azo-2 amplified a fragment of 90 bp. Azo-2 primers may amplify unspecific products when the population of 
A. brasilense is below 103 CFU g− 1 of soil or roots. 
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absent or under the limit of detection 103 CFU g− 1 of soil (Fig. 2A and B). 
The hypothesis that Azospirillum do not survive well in soil was sug-
gested in previous works (Bashan et al., 1995; Bashan and de-Bashan, 
2015). 

To confirm that the quantified A. brasilense AbV5/AbV6 population 
at the root and soil was the inoculated one and not soil indigenous 
species of Azospirillum, the soil before sowing and the roots from unin-
oculated maize plants were analyzed; no amplification was detected in 
both cases (Fig. 3A and B). 

3.2. Azospirillum brasilense impact in maize yield 

The maize grain yield average of uninoculated treatments which 
received 80 and 240 kg of N ha− 1 were 12,734 and 11,977 kg ha− 1, 
respectively, while the inoculated treatments with the same amount of N 
reached the average of 13,865 and 13,755 kg ha− 1. Therefore, the gain 
due to inoculation was near 6% in both N treatments. The combination 
of A. brasilense AbV5/AbV6 with N fertilization intensified maize growth 
and yield, representing an economically viable and environmentally 
sustainable technique (Zeffa et al., 2019). Additionally, based on the low 
values of rainfall (average of 72 mm) in the first month after sowing 
(Fig. 1), the ability of A. brasilense to improve resistance to the plant in 
drought stress conditions was confirmed (Bashan and De Bashan, 2010; 
Díaz-Zorita et al., 2012). 

4. Conclusions 

In this study, we presented a sensitive tool to trace and determine the 
population size of A. brasilense in the environment. By using it, we 
showed that the A. brasilense inoculated on the seeds migrates to the 
roots right after radicle emergence. In addition, we showed that the 
A. brasilense population stayed in a concentration sufficient for gener-
ating a positive effect on maize yield. This approach is useful not only for 
ecological studies but also to validate inoculation practices and agri-
cultural managements. 
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