

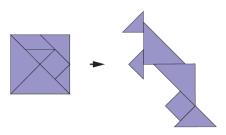
## UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA



## Gabarito do Ciclo 4

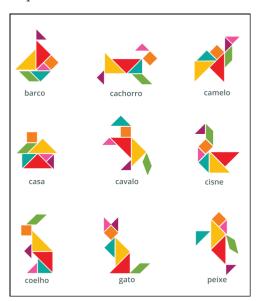
Primeira Semana:

Desafio 1.1 Júlia usou peças do Tangram para montar a figura de um canguru.



Ela não usou uma das peças. Desenhe a peça que ela não usou.

Solução: Um desafio interessante para explorar as figuras geométricas, bem como estimular os alunos a criarem imagens diversas, como pode-se ver abaixo:

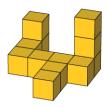


Observamos que o *Tangram* é formado por cinco triângulos, um quadrado e um paralelogramo. A partir disso, vemos que o canguru construído por Júlia não contém o paralelogramo:



Resposta: Júlia não usou a peça no formato de paralelogramo.

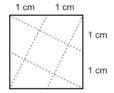
Desafio 1.2 Carlinhos montou o arranjo da figura a seguir com 12 cubos.



Esses cubos foram colados com 1 pingo de cola entre as faces em contato. Quantos pingos de cola ele usou?

Solução: usando a própria figura observamos que podemos fazer com o lápis um pontinho na junção de duas faces, representando o pingo de cola. A fileira horizontal com 4 cubos, terá 3 pingos, nos dois cubos que apontam para frente mais 2 pingos, nos dois cubos que apontam para trás mais 2 pingos, no outro cubo que aponta para trás mais 1 pingo, no cubo que sobe na vertival mais 1 pingo e nos dois cubos que sobem na vertical mais 2 pingos. Assim, no total, Carlinhos usou 3+2+2+1+1+2=11 pingos.

**Desafio 1.3** (Extra) Rosinha cortou a folha quadrada nas linhas pontilhadas de acordo com a figura ao lado. Além do quadradinho central, ela juntou os pedacinhos cortados e formou outros quadradinhos iguais ao central. No total, incluindo o central, com quantos quadradinhos ela ficou?



Solução: pode ser usada uma folha, aumentando os lados do quadrado para 10cm x 10cm para questoes de visualização, e fazer os mesmos recortes conforme mostrado na figura. Juntando os quatro triângulos com os quatros quadriláteros, vemos que formam exatamente quatro quadrados, assim, contando com mais o quadrado central, no total Rosinha ficou com 5 quadradinhos.

## Segunda Semana:

**Desafio 1.4** Emília terminou em 3º lugar numa competição de ginástica. Havia 3 ginastas entre ela e o último colocado. Ao todo, quantos ginastas participaram da competição?

Solução: podemos marcar em uma fileira a Emília na posição terceiro lugar, três pessoas entre ela e o último, e então somar. Portanto, 7 ginastas participaram da competição ( $1^{\circ}$   $2^{\circ}$   $3^{\circ}$  (Emília)  $4^{\circ}$   $5^{\circ}$   $6^{\circ}$   $7^{\circ}$  (último)).

**Desafio 1.5** Miguel tem 6 pesos diferentes, de 1, 2, 3, 4, 5 e 6 kg. Ele coloca 5 desses pesos numa balança e deixa 1 peso de lado para a balança ficar equilibrada:



Qual foi o peso colocado de lado?

Solução: pela figura, já foram usados os pesos de 5kg e 6kg, sobrando os pesos de 1, 2, 3 e 4kg, sendo que um deles irá ficar de fora. Vamos analisar as possibilidades para cada peso para ficar de fora.

| peso fora | balança 1 | balança 2 | análise/resultado                  |
|-----------|-----------|-----------|------------------------------------|
| 4         | 1 e 2     | 3         | as balanças não ficam equilibradas |
| 4         | 1 e 3     | 2         | as balanças não ficam equilibradas |
| 4         | 2 e 3     | 1         | as balanças não ficam equilibradas |
| 3         | 1 e 2     | 4         | as balanças não ficam equilibradas |
| 3         | 1 e 4     | 2         | as balanças não ficam equilibradas |
| 3         | 2 e 4     | 1         | as balanças não ficam equilibradas |
| 2         | 1 e 3     | 4         | as balanças não ficam equilibradas |
| 2         | 1 e 4     | 3         | as balanças não ficam equilibradas |
| 2         | 3 e 4     | 1         | as balanças não ficam equilibradas |
| 1         | 2 e 3     | 4         | as balanças ficam equilibradas     |

Portanto, serão usados os pesos de 2kg e 3kg na primeira balança, o peso de 4kg na segunda balança, onde cada balança ficará com 10kg, e assim, o peso colocado de fora foi o de 1 kg.

Solução alternativa: a soma de todos os pesos é 1+2+3+4+5+6=21kg, como os pesos de 5 e 6 kg já foram usados, sobram 21-11=10kg para distribuir, com dois pesos para a balança 1 e 1 peso para a balança 2, a qual de princípio está com 1 kg a mais, assim, a distribuição não será de 5kg para cada balança, e sim 5kg para a primeira balança e 4kg para a segunda. Portanto, na 2ª balança estará o peso de 4kg e na 1ª balança estarão os pesos de 2kg e 3g, ficando então de lado o peso de 1 kg.

**Desafio 1.6** (Extra) Numa lagoa, vivem 3 sapos. Cada noite, um dos sapos canta uma canção para os outros 2 sapos. Depois de 9 noites, um dos sapos havia cantado 2 vezes. Outro sapo havia escutado 5 canções. Quantas canções o terceiro sapo havia escutado?

Solução: denotando por S1, S2 e S3 os sapos, vemos que o Sapo 1 canta 2 noites, o outro sapo, que seja o Sapo 2, escuta 5 canções, o que significa que ele cantou 4 noites, e portanto, o terceiro sapo cantou nas noites que sobraram, ou seja, cantou em 3 noites e por consequência escutou 6 canções.

| Sapos/Noite | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 |
|-------------|----|----|----|----|----|----|----|----|----|
| S1          | С  | С  |    |    |    |    |    |    |    |
| S2          |    |    | С  | С  | С  | С  |    |    |    |
| S3          |    |    |    |    |    |    | С  | С  | С  |

Terceira Semana:

Desafio 1.7 Ana tem 4 discos de tamanhos diferentes.



Ela quer construir uma torre com 3 discos de forma que cada disco seja menor que o disco que está logo abaixo dele. Quantas torres diferentes Ana pode fazer?

Solução: podemos enumerar os discos em ordem decrescente de tamanho, sendo 4>3>2>1. Assim, analisamos as possibilidades para uma torre com três discos e concluímos que Ana pode fazer 4 torres diferentes: 4-3-2, 4-3-1, 4-2-1 e 3-2-1.

**Desafio 1.8** Com sua jarra cheia de suco, marta consegue encher 10 copos. Com essa mesma jarra ela consegue encher 2 garrafas.



Quantos copos ela consegue encher com 3 garrafas cheias de suco?

Solução: se uma jarra enche 10 copos e também enche duas garrafas, significa que em cada garrafa cabem 5 copos. Logo, com 3 garrafas cheia de suco podemos encher 3x5=15 copos.

**Desafio 1.9** (Extra) A sala de aula da professora Débora tem 13 alunos e no mural da sala há um cartaz com os meses do ano. Cada aluno escreveu seu nome no mês em que nasceu. O que acontece com certeza, na sala da professora Débora?

- a) Em todo mês há um aniversariante.
- b) Há um mês com 2 aniversariantes ou mais.

- c) Há um mês sem nenhum aniversariante.
- d) Há um mês com 3 aniversariantes.
- e) Todos os aniversariantes fazem aniversário no mesmo mês.

Solução: vamos montar uma tabela para analisar os casos possíveis de acontecer.

- 1. Podemos ter um aniversariante em cada mês, o que totaliza 12 aniversariantes, e obrigatoriamente o 13º será em qualquer mês (aleatório, por exemplo Jan) e assim, pelo meno um mês ficará com 2 aniversariantes.
- 2. Agora supomos que um mês (aleatório, por exemplo, Dez) ficará sem aniversariantes, e nos 11 meses restantes um aniversariante em cada, sobrando então mais 2 aniversariantes para distribuir (aleatoriamente, pode ser que os dois estejam no mesmo mês ou em meses separados, por exemplo, em Fev e Ago), nesse caso haverá pelo menos um mês com 2 aniversariantes ou mais.
- 3. Agora supomos que dois meses (aleatórios, por exemplo, Nov e Dez) ficará sem aniversariantes, e nos 10 meses restantes um aniversariante em cada, sobrando então mais 3 aniversariantes para distribuir (aleatoriamente, pode ser que os três estejam no mesmo mês ou em meses separados, por exemplo, em Fev, Mar e Ago), da mesma maneira, haverá pelo menos um mês com 2 aniversariantes ou mais.
- 4. Seguimos essa lógica até chegar o caso em todos os 13 alunos fazem aniversário em dois meses (aleatoriamente, por exemplo, Jan e Jul) e da mesma maneira, haverá pelo menos um mês com 2 aniversariantes ou mais.
- 5. Por fim, o caso em que todos os 13 alunos fazem aniversário no mesmo mês (aleatoriamente, por exemplo, Jul) e assim, haverá pelo menos um mês com 2 aniversariantes ou mais.

Portanto, das alternativas dadas, com certeza, na sala da professora Débora há um mês com 2 aniversariantes ou mais.

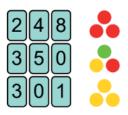
| Casos/Mês | Jan   | Fev | Mar | Abr | Mai | Jun | Jul    | Ago | Set | Out | Nov | Dez |
|-----------|-------|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|
| $1^{0}$   | **    | *   | *   | *   | *   | *   | *      | *   | *   | *   | *   | *   |
| $2^{0}$   | *     | **  | *   | *   | *   | *   | *      | **  | *   | *   |     |     |
| 30        |       | **  | **  |     |     |     |        | **  |     |     |     |     |
| :         |       |     |     |     | :   |     |        |     |     | :   |     |     |
| 11º       | ***** |     |     |     |     |     | *****  |     |     |     |     |     |
| $12^{0}$  |       |     |     |     |     |     | ****** |     |     |     |     |     |

## Quarta Semana:

**Desafio Avaliativo.** Um jogo consiste em descobrir uma senha de 3 algarismos. Para descobrir qual é essa senha um jogador faz várias tentativas e, em cada uma delas, recebe uma pista através de três bolinhas.

- Cada bolinha vermelha indica que existe um algarismo que não faz parte da senha;
- Cada bolinha amarela indica que existe um algarismo que faz parte da senha, mas está na posição errada;
- Cada bolinha verde indica que existe um algarismo que faz parte da senha e está na posição correta.

Qual é a senha no jogo da figura?



Solução: esse jogo é um tipo de jogo de quebra de senha conhecido como "Mastermind" e envolve análise combinatória, dedução e lógica. Chamando as pistas de 1, 2 e 3 temos:

- Na pista 1, as três bolas vermelhas indicam que os algarismos 2, 4 e 8 não fazem parte da senha.
- Da pista 3, as três bolas amarelas indicam indicam que os algarismos que fazem parte da senha são 3, 0 e 1 mas estão em posições erradas.
- Da pista 2, a bola vermelha indica que o algarismo 5 não faz parte da senha (pois já sabemos que os três algarismo são 3, 0 e 1), a bola verde e a amarela indicam que um dos algarismos entre 3 e 0 está na posição correta e o outro não.
- Assim, com os algarismos 3, 0 e 1 podemos ter as seguintes possibilidades para a senha:

| Possibilidade       | posição 1 | posição 2 | posição 3 |
|---------------------|-----------|-----------|-----------|
| 1 <sup>a</sup>      | 3         | 0         | 1         |
| $2^{\underline{a}}$ | 3         | 1         | 0         |
| $3^{\underline{a}}$ | 0         | 1         | 3         |
| $4^{a}$             | 0         | 3         | 1         |
| $5^{\underline{a}}$ | 1         | 0         | 3         |
| $6^{\underline{a}}$ | 1         | 3         | 0         |

- Descartamos a 1<sup>a</sup>, 2<sup>a</sup> 4<sup>a</sup> e 5<sup>a</sup> pois da pista 3 já sabemos que não é a posição correta, ou seja, o 3 não pode estar na posição 1, o zero não pode estar na posição 2 e o 1 não pode estar na posição 3.
- Temos então as possibilidades para a ordem da senha 0-1-3 ou 1-3-0. Da pista 2, como já sabemos que o 3 não pode estar na posição 1, segue que o zero está na posição correta (posição 3).
- Portanto, a senha do jogo é 1-3-0.