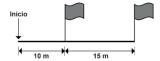


UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA

Gabarito do Sexto Ciclo

Primeira Semana:

Desafio 6.1 Na aula de Educação Física, Mariana correu do início até uma das bandeiras, voltou ao início; depois correu até a outra bandeira e voltou ao início novamente. No total, quantos metros mariana percorreu?



Solução: Um percurso que Mariana pode ter feito é o seguinte:

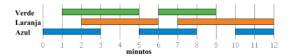
- 1. Correu até a bandeira mais próxima do início (10 metros).
- 2. Retornou ao início (outros 10 metros).
- 3. Correu até a bandeira mais distante do início (10 + 15 = 25 metros).
- 4. Retornou ao início (mais 25 metros).

No total, ela percorreu 10 + 10 + 25 + 25 = 70 metros. Ela poderia também ter escolhido ir primeiro até a bandeira mais distante do início, mas isso não mudaria a quantidade de metros percorridos.

Desafio 6.2 Numa fila, há seis meninos esperando para entrar no laboratório. A professora separou os meninos, colocando entre cada dois deles três meninas. No total, quantos meninos e meninas ficaram na fila?

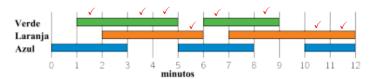
Solução: Se há 6 meninos na fila inicialmente, há 6-1=5 espaços entre dois meninos vizinhos para serem ocupados por meninas. Sabendo que cada um desses espaços será ocupado por 3 meninas, há $3\times 5=15$ meninas na fila. Ao todo, há 6+15=21 meninos e meninas na fila.

Desafio 6.3 (Extra) No teatro Ópera, um técnico de luz liga e desliga as luzes. Ele usa o plano seguinte:



Durante quanto tempo, no total, estão exatamente duas das luzes acesas ao mesmo tempo?

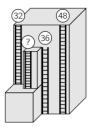
Solução: Na figura abaixo são marcados os instantes que exatamente duas luzes estão acesas simultaneamente:



Ao todo, em 8 minutos há exatamente duas luzes acesas simultaneamente.

Segunda Semana:

Desafio 6.4 Num prédio alto, há quatro escadas de incêndio, conforme mostra a figura abaixo. Na figura, as alturas de três das escadas estão indicadas encima de cada uma delas. Qual é a altura da escada mais curta?



Solução: A altura da parte menor do edifício, na forma de cubo, é igual à diferença entre a altura da escada maior e a altura da escada apoiada no cubo à esquerda na figura. Logo, a altura do cubo é 48-32=16. A altura do cubo somada a altura da escada mais curta é igual à altura da escada ao lado do cubo, que é 36. Portanto, a altura da escada menor é igual a 36-16=20.

Desafio 6.5 O pardal Saltitão gosta de passear ao longo da cerca, saltando de estaca em estaca. Saltitão dá 4 saltos para a frente, 1 salto para trás, novamente, 4 para a frente, 1 para trás e assim sucessivamente. Sabendo que Saltitão demora 1 segundo em cada um dos saltos, quantos segundos precisa para ir da estaca A (início) para a estaca B (fim)?

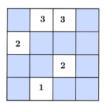
Solução: Com os 4 primeiros saltos, Saltitão alcança a 5^a estaca (contando da esquerda para a direita), porém no próximo salto retorna para a 4^a estaca. Para os próximos 4 saltos, chegará na 8^a estaca, e retorna para a 7^a estaca. Os 4 próximos saltos, ele alcança a estaca B (fim). Assim, Saltitão deu 4+1+4+1+4=14 saltos o que equivale a 14 segundos para realizar o percurso.

Desafio 6.6 (Extra) As amigas Alice, Beatriz, Catarina e Daniela nasceram no mesmo ano. Os seus aniversários são: 20 de fevereiro, 12 de abril, 12 de maio e 25 de maio (não necessariamente por esta ordem). A Beatriz e a Alice nasceram no mesmo mês. A Alice e a Catarina nasceram no mesmo dia de meses diferentes. Qual das amigas é a mais velha?

Solução: Já que Beatriz e a Alice nasceram no mesmo mês e considerando as 4 datas, sabemos que ambas nasceram no mês de maio. Além disso, Alice e Catarina nasceram no mesmo dia, que deve ser dia 12, podendo ser 12/04 ou 12/05. A partir destas duas conclusões, a data de aniversário de Alice é 12/05, o que faz com que 12/04 seja o aniversário de Catarina e 25/05 o aniversário de Beatriz. Logo, Daniela nasceu no dia 20/02, e é a amiga mais velha do grupo.

Terceira Semana:

Desafio 6.7 Em alguns dos quadrados sombreados da tabela da figura, Laura escondeu uma estrela. Em cada quadrado que não está sombreado ela escreveu o número de estrelas existentes nos quadrados vizinhos a esse. Dizemos que dois quadrados são vizinhos se partilham um lado ou um vértice. Quantas estrelas Laura escondeu nos quadrados da tabela?



Solução: Respeitando a regra imposta no enunciado do desafio, vemos que a melhor para primeira análise consiste na quadrado que contém o número 3 na primeira linha e segunda coluna:

*	3	3	
2	*	*	
		2	
	1		

A continuação da disposição ou não de estrelas nos quadrados sombreados seguirá a numeração: $\mathbf 2$ na posição 2^a linha e 1^a coluna; $\mathbf 2$ na 3^a linha e 3^a coluna; $\mathbf 1$ na 4^a linha e 2^a coluna e $\mathbf 3$ na 1^a linha e 3^a coluna:

*	3	3	*				
2	*	*	\otimes				
\otimes	\otimes	2	\otimes				
*	1	\otimes	\otimes				

O símbolo \otimes indica que o quadrado sombreado não contém estrela. Logo, Laura escondeu 5 estrelas.

Desafio 6.8 Dona Maria dividiu sua horta em regiões retangulares em que o comprimento do maior lado é igual ao dobro do comprimento do menor lado. Ela decidiu colocar dois cercados, como na figura abaixo, um para plantar cenouras e outro para plantar tomates.

•	/	
	** **********************************	**
(a)		

Se o perímetro do cercado das cenouras tem 42 metros, qual é perímetro do cercado dos tomates? Na região fora dos cercados de sua horta, Dona Maria ainda não plantou legumes. Quanto de área ela tem à disposição?

Solução: A horta de cenouras possui 4 lados do maior lado do retângulo e 6 lados do lado menor do retângulo. Como o maior lado é o dobro do menor lado, temos $4 \times 2 + 6 = 14$ lados do menor retângulo. Então, o perímetro é igual a 14 vezes o menor lado, o que significa que o menor lado mede $42 \div 14 = 3 \, m$. Consequentemente, o maior lado mede $6 \, m$.

Observando a horta de tomates, nota-se que são 4 lados do lado maior e 10 lados do lado menor que formam o cercado. Logo, o perímetro da horta de tomates é $4 \times 6 + 10 \times 3 = 54 \, m$.

Para a área da horta que não temos legumes, observamos inicialmente que a área de cada retângulo é $3 \times 6 = 18 \, m^2$. Contando a quantidade de retângulos que não há cultivo de legumes, verificamos que existem 20. Logo, a área que Dona Maria tem a disposição é $20 \times 18 = 360 \, m^2$.

Desafio 6.9 (Extra) Um canguru pode dar saltos de duas distâncias: 8 e 10 metros. Para chegar até o Rio Nevado, ele percorre 100 metros em linha reta. De quantas maneiras ele pode chegar ao Rio Nevado?

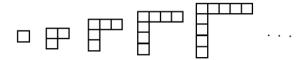
Solução: Como só são possíveis saltos de 8 e 10 metros, o número de saltos de 8 metros deve resultar em um número cujo algarismo das unidades seja 0 (para totalizar 100 metros). Isto ocorre quando se multiplica 8 por um número múltiplo de 5. Assim, temos as situações:

- 10 saltos de 10 metros e 0 de 8 metros: $10 \times 10 + 8 \times 0 = 100 + 0 = 10$;
- 6 saltos de 10 metros e 5 de 8 metros: $10 \times 6 + 8 \times 5 = 60 + 40 = 100$;
- 2 saltos de 10 metros e 10 de 8 metros: $10 \times 2 + 8 \times 10 = 20 + 80 = 100$.

Para 15 saltos de 8 metros, passaríamos o valor de 100 metros. Portanto, há 3 maneiras de se chegar no Rio Nevado com saltos de 10 e 8 metros.

Quarta Semana:

Desafio 6.10 - Avaliativo. Manuel desenhou várias figuras segundo um código secreto que ele inventou:

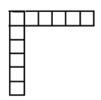


A primeira figura é formada por um único quadradinho, a segunda é formada por três quadradinhos e assim por diante.

- a) Desenhe a sexta figura de Manuel.
- b) Quantos quadradinhos há na décima figura?
- c) Quantos quadradinhos há ao todo nas 20 primeiras figuras?

Solução:

a) A cada figura, é colocado um quadradinho em cada "ponta" da figura. Assim, a 6^a figura terá o quadradinho da figura 1, mais 5 quadradinhos para a direita e 5 para baixo:



b) Cada figura tem dois quadradinhos a mais que a anterior. Então, se a sexta figura tem 11 quadradinhos, a sétima tem 13, a oitava tem 15, a nona figura tem 17 quadradinhos e a décima figura tem 19 quadradinhos.

Outra maneira de chegar nesse número é considerar o raciocínio do item a), ou seja, na construção da décima figura teremos o quadradinho da figura 1 mais 9 quadradinhos a direita e mais 9 quadradinhos abaixo, totalizando 19 quadradinhos.

c) Uma das formas de encontrar essa quantidade é somar a quantidade de quadradinhos de cada figura, como pode-se observar no quadro a seguir:

Figura	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Número de quadradinhos	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39

Somando as quantidades, é possível concluir que há 400 quadradinhos nas primeiras 20 figuras.

Outra forma de realizar essa soma é percebendo que a soma dos sucessivos números ímpar resulta em um quadrado, conforme é ilustrado abaixo:

```
1=1^2; 1+3=4=2^2 (a soma dos dois primeiros ímpares resulta 2^2); 1+3+5=9=3^2 (a soma dos três primeiros ímpares resulta 3^2); \vdots
```

Logo, a soma dos 20 primeiros números ímpares: $1+3+5+\cdots+35+37+39$ resulta em $20^2=400$.

Uma terceira maneira de realizar a soma é perceber que tomando os extremos de

$$1+3+5+\cdots+35+37+39$$
,

percebemos que a soma deles se repete: 1 + 39 = 40, 3 + 37 = 40, 5 + 35 = 40, e assim por diante. Como essa constante (40) aparece 10 vezes, a soma desejada vale $10 \times 40 = 400$.