Computers and Electronics in Agriculture 163 (2019) 104858

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

Peach growth cycle monitoring using an electronic nose )

Check for

a,b,= updates.

Henike Guilherme Jordan Voss”, Sergio Luiz Stevan Jr.*™*, Ricardo Antonio Ayub®

2 Graduate Program in Applied Computing (PPGCA), State University of Ponta Grossa (UEPG), Ponta Grossa (PR) 84030-900, Brazil
Y Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil
€ Graduate Program in Agronomy (PPG), State University of Ponta Grossa (UEPG), Ponta Grossa (PR) 84016-210, Brazil

ARTICLE INFO ABSTRACT

In regions with the predominance of agriculture, an inspection of the quality and fruit maturity index in the
orchard is usually analyzed by the farmer’s experience, which can be subject to errors and generate a greater cost
of time and money. Thus, monitoring equipment that generates a rapid and accurate response to the growth
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E f’a‘:h cycle of the peaches in the crop is desirable, together with a low marketing cost. For this purpose, electronic
;Z:S:aﬁon noses prove to be the most suitable equipment, since it allows online monitoring of the VOCs (Volatile Organic

Compounds) generated by the crop. In this context, a prototype was developed to perform the classification of
the fruit growth cycle (pre-harvest and post-harvest). Models with the 13 gas sensors made with a metal oxide
semiconductor (MOS) and the reduction to 7 sensors were studied with the aid of the Pearson’s Chi-square test,
for comparison. Samples with 4 growth stages were used for the training and construction of the model. The
accuracy of 99.23% in the validation step and 98.08% in the sample test step using the Random Forest method
with linear discriminant analysis for the reduced data set for 7 sensors shows that the device is promising for
monitoring of areas with an intense emission of VOCs.

1. Introduction

Fruits produce different volatile organic compounds (VOCs) and
their quality measured by aroma, taste and color changes constantly
throughout the growth and maturation phase, which occurs in the pre-
harvest period (Baietto and Wilson, 2015). When measuring these
properties, some instrumental methods used are manual and destruc-
tive. Non-destructive measurement of internal fruit quality is becoming
important for industry and for consumers (Rajkumar and Wang, 2012).
The development of sensor technology allowed the electronic noses to
be presented as simple devices with high detection accuracy, and these
devices are increasingly being used as an alternative to traditional
methods (Wu et al., 2017; Zhu et al., 2017; Lin and Zhang, 2016; Jiang
and Wang, 2016; Men et al., 2018). Moreover, electronic noses can also
be applied to the monitoring of air quality (Deshmukh et al., 2015;
Abraham and Pandian, 2013; Bagula et al., 2012; Peterson et al., 2017;
Kim and Hwangbo, 2018; Blanco-Novoa et al., 2018; Laref et al., 2018),
gases emitted by the soil (Bieganowski et al., 2018; Sudarmaji and
Kitagawa, 2016; Dorji et al., 2017; Pineda and Pérez, 2017), food
quality (Aleixandre et al., 2015; Wojnowski et al., 2017; Chen et al.,
2018; Srivastava et al., 2019; Mishra et al., 2018), beverage quality
(Aleixandre et al., 2018; Wei et al., 2017; Santos and Lozano, 2015; Ab
Mutalib and Jaswir, 2013; Nurul et al., 2017; Ragazzo-Sanchez et al.,

2008), in the medical field (Huang et al., 2018; Voss et al., 2012; Li
et al., 2017; Lorwongtragool et al., 2014), among others (see Fig. 1).

Electronic noses are made up of an array of chemical sensors based
on metal oxide materials (MOS). In the same way as human noses, these
devices are not able to identify the substances separately in each
sample. It may make an analogy of the data obtained by these sensors
with the fingerprint since it is very difficult to find two different sub-
stances with the same pattern, that is, it is possible to classify sub-
stances according to their patterns (Pineda and Pérez, 2017). These
devices consist of three parts: sensor array, signal processing unit and
pattern recognition. These three parts simulate, respectively, the ac-
quisition of information by sensory neurons of the human olfactory
receptor, the encoding of the olfactory nerve (bulb), brain memory and
information processing by the human olfactory system (Huang et al.,
2018).

The biological mechanism is a common indication of fruit ripeness.
In places where agriculture predominates the inspection of the quality
and maturation of the fruits is given by the experience of the farmer,
which can be subject to errors and carelessness (Chen et al., 2018). In
addition, if a specific period for fruit harvesting is considered, there
may be situations where the fruits are of different qualities at different
points in the planted area, which is part of precision agriculture. In
view of this, it is desirable to have equipment that monitors the
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Fig. 1. An illustrative flowchart of the adopted methodology.

different degrees of maturation at the cultivation points and provided
this can be identified by VOCs, the electronic noses are a robust and
low-cost alternative for this purpose, besides allowing the monitoring of
culture.

Based on gas chromatography and mass spectrometry (GC-MS)
(Horvat et al., 1990; Baraldi et al., 1999) recognized the main VOCs
exhaled by peach during and after the full bloom phase. Table 1 shows
the main gases generated as by-products in this process.

Currently, the peach crop has expanded, with the planting of more
than 500 thousand seedlings/year in southern Brazil (Dutra et al.,
2002). Considering the physicochemical characteristics of the peach
fruit growth, for this work was carried out the monitoring of the cul-
tivar Eragil in the city of Ponta Grossa, Parand. Thus, non-destructive
equipment was used, applied near the crop and capable of detecting the
gases exhaled by peach, to identify changes in the different cycles, from
growth, maturation, and post-harvest.

2. State-of-the-art

There are many papers in the literature applying electronic noses to
qualitatively discriminate peaches. Brezmes et al. (2000) observed the
ripening process of peach fruits. Based on an arrangement of chemical
tin oxide sensors and pattern recognition techniques based on neural
networks, the designed olfactory system can classify fruit samples into
three different maturation states. Measures made with peaches show a

Table 1
VOCs identified by GC/MS by (GC-MS) (Horvat et al., 1990; Baraldi et al.,
1999) in the process of growing peaches.

Classe Compound Classe Compound
Aldehydes Hexanal Terpinolene
(E)-2-hexenal Linalool
Benzaldehyde Lactones y-hexalactone
Alcohols 1-Hexanol y-heptalactone
(E)-2-hexenol y-octalactone
(Z)-3-hexenol y-nonalactone
Esters Hexyl acetate y-decalactone
(E)-2-hexenyl acetate y-dodecalactone
Ketones Acetoin §-decalactone
Terpenoids a-terpinene 8-dodecalactone

y-terpinene

success rate above 93% (green, ripe and super mature). An additional
feature of the system is the ability to accurately predict the number of
days the fruit is stored since harvest. Measurements made with peaches
show a maximum error of 1day. Benedetti et al. (2008) used a com-
mercial electronic nose to classify four peach cultivars and to evaluate
the post-harvest maturation stage. Principal Component Analysis (PCA)
and linear discriminant analysis (LDA) were used to investigate whe-
ther the electronic nose was able to distinguish between four different
cultivars. The sensor responses were adjusted with a sigmoid transition
function, allowing the definition of three different stages of maturation
(immature, mature, super mature). The analysis of the classification
and regression tree (CART) was applied to characterize the peach
samples in the three classes. The decision tree analysis classified sam-
ples in each respective group with a cross-validation error rate of 4.87%
and test error of 2.44%. Guohua et al. (2012) also applied an electronic
nose to predict peach freshness. The device was produced with an ar-
rangement of eight MOS gas sensors. Principal component analysis
(PCA) and stochastic resonance (SR) were used for measurement data
analysis. The results show that e-nose can distinguish peaches between
fresh and overmature conditions. The validation of the results of the
experiments demonstrates that the prediction accuracy of this model is
85%. Zhang et al. (2012) established a quality index model able to
describe the different dates of the harvest of peaches. The partial least
squares regressions (PLS) and principal component regression model
(PCR) represented a good ability to describe the quality indices of three
selected sets of peaches (green, ripe and mature). The results showed
that the PLS model was able to represent good ability to predict quality
indices, with R = 0.86 and SEP (Standard prediction error) = 8.77 for
CF; R = 0.83 and SEP = 0.297 for SC; R = 0.83 and SEP = 0.2 for pH.
The PCR model showed R = 0.84 and SEP =7.33; R =0.82 and
SEP = 0.44; R = 0.78 and SEP = 0.21; for CF, SC and pH, respectively.

As previously shown, applications tend to perform fruit measure-
ment after harvesting and do not evaluate fruit throughout the growing
stage in the orchard. Therefore, the work seeks to build an electronic
nose that monitors the entire period from post-flowering to post-har-
vest, with field monitoring. The main classification methodologies that
will be addressed during the paper, such as PCA, LDA and Artificial
Neural Networks (ANN).
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Table 2
Sensors used in the experiment and their sensitive gases.

Sensor Sensitive gases

MQ-2 H;, LPG, CH4, CO, ethanol, propane, butane, and methane
MQ-3 Ethanol, benzene, CH,4, hexane, LPG and CO

MQ-4 LPG, CHy4, Hz, CO and ethanol

MQ-5 H;, LPG, CH4, CO, ethanol, iso-butane, and propane

MQ-6 LPG, H;, CHy4, CO, ethanol, iso-butane, and propane

MQ-7 CO, Hy, LPG, CH4 and ethanol

MQ-8 H,, LPG, CHy, CO and ethanol

MQ-9 CO, CHy, and LPG

MQ-135 NHj3, benzene, ethanol, CO,, CO, andNH,4

TGS822 Acetone, n-hexane, benzene, ethanol, iso-butane, CO and methane
TGS2600 H,, CO, methane, iso-butane, and ethanol

TGS2602 H3, NHs, ethanol, H;S and toluene

TGS2603 Hz, Hz8, ethanol, methyl mercaptan and trimethylamine

3. Materials and methods

The methodology performed in this work is basically divided into
four stages: equipment construction, execution of the experiment pro-
tocol, pre-processing and data analysis.

3.1. Construction of equipment

This part is subdivided into the following ones: the selection of the
sensors to be used in the sensor array, hardware construction, signals
preprocessing, database construction that will serve as input for the
pattern recognition through the algorithms of machine learning.

In total, 13 MOS sensors were used in electronic nose device; 9 MQ
family sensors manufactured by Hanwei Electronics Co., Ltd (MQ-2,
MQ-3, MQ-4, MQ-5, MQ-6, MQ-7, MQ-8, MQ-9, MQ-135) and 4 sensors
manufactured by TGS Figaro (TGS 822, TGS 2600, TGS2602, TGS
2603). The chemical reactions between the surface molecules of sensors
and gases provide a change in the sensor response as the change in
ambient gas concentration. Therefore, the resistivity of the sensors in-
creases in the presence of air and decreased in the presence of sensitive
gases. Table 2 shows the most sensitive sensors and gases thereof ac-
cording to the manufacturers' datasheets Figaro® and Hanwei®.

Many sensors have been selected, which will create a fingerprint for
each sample. Since each sensor responds in a way and the set of re-
sponses will generate a response almost unique to each type of gas,
coupled with the fact that each sensor works with one set of gases
different from the others. Therefore, the goal is to scan all possibilities,
identify the most important sensors and if necessary remove the re-
dundant sensors.

Arduino Mega 2560 platform, which has an ATMega 2560 micro-
controller, is used in the construction of the system hardware. A 16-
channel Cd74hc4067 analog multiplexer was also used. Although the
microcontroller has a number of analog inputs that would be sufficient
for the number of sensors used in the study, it is necessary to consider
that the device is designed to be used in various types of platforms and
microcontrollers. In addition, parallel and continuous reading of all
sensors provides a total current consumption by the ATMega 2560
above that tolerated and therefore the multiplexer is shown as a sui-
table alternative as it reduces the number of current-consuming pins to
only one, through channel selection. Therefore, the use for only one
analog port of the microcontroller has been reduced. In addition, the
pressure and temperature sensor BMP180 and the humidity sensor HIH-
4030 were also used. The entire system is powered by an automotive
battery with a nominal capacity of 40Ah. Fig. 2 shows the equipment
developed and Fig. 3 shows the block diagram of the circuit.

The developed equipment is illustrated in Fig. 2. This one, by his
turn, has a fan that has the function of ambient air circulation. The air
will be drawn into the device in the sensor array and the side holes
allow the air outflow of the device. This constant flow allows a
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Fig. 2. Equipment developed.

smoother response by the gas sensors. It is worth mentioning that the
gas sensors require an initial preheating period (about ten minutes)
until they reach an ideal constant operating temperature. Therefore, the
stabilization of the response of the sensors will be reached after this
time and these transient data are discarded from the analysis stage of
the responses.

Fig. 3 illustrates the block diagram of the electronic nose circuit.

As illustrated in Fig. 2, the equipment, with the dimensions
(20em x 20 em x 7 ¢cm), has a fan for the airflow that will allow the
best contact of the sample to be measured with the 13 gas sensors, the
sensor temperature and pressure, and the air humidity sensor. In ad-
dition, the USB cable allows data transmission to the computer.

3.2. Experimental protocol

The experiments were carried out in the city of Ponta Grossa in the
state of Parand, which has a temperate climate with mild summer,
where it presents significant rainfall in all months of the year and mild
temperatures in the warmer months, located at latitude 25°05’49”S and
longitude of 50°03"11”W.

The measures comprised the three periods of fruit growth and a
fourth post-harvest period of the fruit. Considering the periods de-
scribed previously, since the flowering occurred in late August/early
September, stage I comprises until the day of October 05, 2018. Stage II
occurred close to October 26, 2018. Stage III includes until the date the
fruit was harvested, on November 17, 2018. After that, stage IV oc-
curred until the date of the last experiment (12/13/2018). Table 3
summarizes each stage of growth in addition to its days based on full
bloom.

The experiments were performed on 08/23/2018 (23 °C average),
09/06/2018 (21 °C average), 09/21/2018 (24 °C average) — stage I, 10/
05/2018 (25°C average), 10/11/2018 (17 °C average), 10/19/2018
(24°C average) — stage II; 10/26/2018 (21 °C average), 11/08/2018
(19°C average), 11/15/2018 (27 °C average) — stage III, 11/30/2018
(27 °C average), 12/07/2018 (24 °C average) and 12/13/2018 (32°C
average) — stage IV. All experiments were performed at the same time,
starting at 3:00 p.m.

The equipment was positioned in the same position for all experi-
ments, at the base of a peach tree in the middle of the orchard, as shown
in Fig. 4. Therefore, the VOCs exhaled by fruits still intact in the tree
were detected directly by the internal sensors to an equipment installed
near the trees, which in turn collected the air (with the volatile com-
pounds of the fruits) to into the box through a fan. This box has small
air vents that allow constant air exchange and also keeps the internal
pressure constant.
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Table 3

Duration of each stage of peach growth according to
(Keske, 2009; Cunha Junior et al., 2007; Lilien-Kipnis and
Lavee, 1971; Barbosa et al., 1993; Barbosa, 1990; Couto,

2006).
Maturation Days after full bloom
Stage 1 0-35
Stage 2 36-49
Stage 3 51-70
Stage 4 71-100

Peach Tree_
— —

E-nose ==

Battery ==

PC == =

Fig. 4. Equipment mounted on cultivar.

Each day involved measuring 15 samples for 2min. As the pre-
heating and transient state (about 10 min) were disregarded, it took
40 min of data reading. As measurements were taken every second, a
total of 1800 records were obtained for each day. For each sample, the
arithmetic mean of the responses of each of the sensors was performed,
and therefore these responses were used as inputs in the algorithms.
Then, the database comprises a total of 180 (15 samples X 12 days)
records or samples. The algorithm model, therefore, was constructed
based on this database.

At the training stage, 70% of the records were used (128 samples),

and for the test step, the other 52 samples were used. It is worth
mentioning that the k-fold applied with 10 partitions performs the
validation process only with the samples used for training, that is, for
each of the 10 iterations 13 of the 128 registers were tested.

3.3. Pre-processing

A modified moving average filter was used in the preprocessing step
of the sensor signals. This filter was used because it is the simplest,
fastest, robust and easy to implement. A simple moving average over n
elements consists of the unweighted averages of the subsets of n ele-
ments in a data set. The original value of n was 50. The change made
was that only the values of the mean with a maximum difference of
three times the standard deviation is entered the moving average
equation, i.e.: [p; — u| = 3o0. Therefore, the value of n in Eq. (1) will be:
1 < n = 50, and within the normal distribution curve, 99.74% of the
data will be around the mean plus 3 standard deviations. This change
provides more smoothing in the data set, removing possible signal
peaks due to the noise coming from the circuit.

In addition, the normalization step (pinorm), Which is given by Eq.

@)z

p; — min(p)
max(p) — min(p) (¢))]

Pinorm =

where min is the minimum value and max is the maximum value of the
set p.

The gas sensors vary depending on the temperature and the relative
humidity of the air. The manufacturers' datasheets show some char-
acteristic curves of the sensor behaviors according to changing these
two variables. These curves use the resistance of the sensors at ambient
temperature and clean air (R,) and in varying conditions (R,) as the
basis. The load resistance (R;) changes the sensitivity of the sensors,
and for the study here, all were set to 10 k. Based on the curves data
reported by the manufacturers, the response compensation was per-
formed as a function where the input parameters were the measured
temperature and the relative humidity of the air, and the output of the
function is the compensated resistance.

To reduce the number of sensors, Pearson’s Chi-square test was
applied to verify the association between each of the input variables
(gas sensors) and the output variable (maturation stage). This test
outputs the Cramer V coefficient, which is a measure of association
between two nominal variables, giving a value between 0 (no associa-
tion between variables) and 1 (complete association). For this study, it
was adopted that if the variable has the coefficient greater than 0.75 it
will be maintained, and if it is smaller 0.50 its will be removed.
Variables with values ranging from 0.50 to 0.75 went through the ex-
haustive search method before dimensionality reduction and
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classification steps to confirm if the presence of each of them would
influence the variance in the reduction components of PCA and LDA,
and therefore whether they were kept in the data analysis. Thus, the
search space, through the exhaustive search, will be considerably re-
duced, since only a part of the sensors will be considered. Therefore, in
this study, we studied 2 behaviors in the responses of the sensors: the
data with the 13 sensors and the data with the reduced sensors.

3.4. Data analysis

In the implementation of the data mining algorithms, the data of the
transient regime, which is the period necessary to stabilize the data of
the sensors after the sample is placed for the reading, were disregarded.
This transient regime period takes about 10 min.

Before data classification, the PCA and LDA were used to identify
possible clusters and to data reduction, which are two of the main
methods present in the literature. After that, we used four supervised
machine classification algorithms: K-nearest neighbors KNN which is
the simplest and most intuitive classification algorithm (Mucherino
et al., 2009), Support Vector Machine (SVM) that has the advantages of
generating non-linear boundaries and the use of state space re-
presentation (Ruiz et al., 2018), Random Forest (RF) that has received
increasing interest because of its precise prediction and noise robust-
ness compared to single classifiers, in addition to being computationally
faster than other set methods of trees (Li et al., 2017) and the artificial
neural network with a simple hidden layer called Extreme Machine
Learning (ELM). These algorithms were selected because as in (Chen
et al., 2018; Brezmes et al., 2000) good results were reached in the fruit
maturation classification.

SVM was used with the linear kernel. Since the work involves a
multiclass problem, the “one-against-one” approach was used. For this
approach, SVM classifiers have all combinations of class pairs.
Therefore, for k classes, k(k — 1)/2 binary classifiers are trained. The
output of each classifier in the form of a label is obtained by a voting
scheme in which the most frequent label is assigned. In the case of a tie,
a tiebreaker strategy is adopted. The tie-breaking strategy adopted was
to select a class randomly.

RF is not necessary to perform the pruning method of some nodes to
avoid overfitting. Some recent papers show that the use of this tech-
nique in e-noses can improve the accuracy of regression/classification
(Li et al., 2017; Men et al., 2018). The operation scheme of a Random
Forest algorithm is illustrated in Fig. 5. This algorithm is a set of several
decision trees, in which each of these trees performs the classification
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from a subset of randomly selected attributes. Then, the final classifi-
cation is obtained by means of the majority voting method, in which the
class that obtained the highest number of classifications by the trees
will be selected.

The neural network ELM presents better training performance
compared to traditional algorithms, besides facilitating the construction
of the online model (Huang et al., 2012). Unlike traditional learning
algorithms, the ELM not only tends to achieve the smallest training
error but also lower weights. The only parameters to be adjusted are the
hidden layer size and the learning function. Fig. 6 shows the structure
of a feedforward neural network of the ELM type, in which it is com-
posed of three layers (input, concealment, and output). After the ad-
justed weights of the input layer, the signals of the hidden layer are
passed by the activation functions, which in turn are combined linearly
to the output layer.

The step of constructing the model involves doing the classification
algorithm and then train the algorithm with the data collected from the
database. Then, an ideal model (classifier) will be constructed that will
be responsible for predicting the new data inserted in the database.

To validate the results obtained with the classifiers, the k-fold cross-
validation method was used. Cross-validation k-fold is a commonly
used technique that takes a set of m examples and partitions them into
K sets of equal sizes (folds) of size m/K. For each set, a classifier is
trained in the other sets (Langford, 2005).

All algorithms were implemented using R and Java languages,
which have a high range of libraries and functions that help in the
process of constructing the models. For the data storage was used the
relational database PostgreSQL

4, Results and discussion

Fig. 7(a) illustrates typical sensor responses for an experiment
measured on the peach-tree in stage 1. Remembering that the first 600 s
comprise the preheating time and the transient state period and were
removed from the data analysis. The figure shows the response obtained
by the first set of data.

Fig. 7(b)-(d) illustrates the typical responses of the sensors to an
experiment measured on the peach in stage 2, stage 3, and stage 4,
respectively. In the same way, the initial 600 s comprise the preheating
time and the transient state period.

It is can see that from the obtained data that the initial stages allow
a previous stabilization of the sensors. The higher concentrations of
gases in the later stages of maturation cause the sensors to take a longer
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\\
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Fig. 5. Random forest ensemble method operation.
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Fig. 6. Structure of an ELM neural network.

time for stabilization. Fig. 7 shows the difference in response of the
sensors during these four phases. In addition, it is noted that the MQ-5
sensor obtained a higher response in the three initial stages in relation
to the final stage. This is probably because this sensor has a higher
sensitivity for the classes of VOCs detected in the initial stages, such as
alcohols, aldehydes, and terpenoids.

To reduce the number of sensors, the Chi-square test showed that
the variables TGS2603 and MQ-5 obtained a Cramer V coefficient
greater than 0.75, and therefore considered important for the model.
The variables MQ-6 and MQ-9 were removed from the model con-
struction since they obtained a coefficient lower than the threshold of
0.50. For the remaining sensors, through the exhaustive search before
step of dimensionality reduction and classification, it was found that
the MQ-3, MQ-4, TGS822, TGS2600 and TGS2602 attributes resulted in
a higher variance in the first 3 principal components compared to MQ-
2, MQ-7, MQ-8, and MQ-135, and therefore were maintained in the
reduced analysis model. Thus, in the reduced analysis model, 7 sensors
(MQ-3, MQ-4, MQ-5, TGS822, TGS2600, TGS2602 and TGS2603) were
used and the complete analysis model used the 13 initial sensors.
Table 4 shows the values of Cramer V coefficient obtained by each
Sensor.

From the data obtained, the first step was to apply the data reduc-
tion methods. Since we have responses for 13 sensors, a three-dimen-
sional reduction was performed using the PCA. As shown in Fig. 8(a),
the three major components have a total variance of 84.1% of the
original set. It can be verified that the post-harvest stage (orange) ob-
tained greater discrimination compared to the other phases. The same
procedure for three dimensions was performed with the LDA method.

Clearly, the second method was able to discriminate better, com-
pared to PCA. The total variance obtained with LD1, LD2, and LD3 was
100%, that is, with only three variables it is possible to represent the set

Table 4
Results obtained through the Chi-square test.

Sensor Cramer V coefficient
MQ-2 0.6905
MQ-3 0.6171
MQ-4 0.6369
MQ-5 0.7794
MQ-6 0.0000
MQ-7 0.6982
MQ-8 0.7324
MQ-9 0.4584
MQ-135 0.5297
TGS822 0.5340
TGS2600 0.7001
TGS2602 0.6163
TGS2603 0.8653

of data obtained by all the gas sensors.

The same procedure was performed for the reduced input set. As
shown in Fig. 9(a), the three principal components have a total variance
of 93.31% of the original set. Compared to Fig. 8(a), there is a greater
variance and discrimination of maturation stages.

It can also be noted that the LDA compared to PCA has been able to
cluster more clearly with the classes, and this is proven with the var-
iance in LD1, LD2, and LD3 of 99.99%. Compared to the original da-
taset there was also a slight improvement in the performance of the LDA
algorithm since the LD1 and LD2 are responsible for 97.4% of the data
variability against 95.07% of the total set. For the 7 sensors, 2 com-
ponents of LDA would be sufficient, but to compare and standardize it
was adopted to use 3 components for all cases.

Then, the supervised classification was performed with the four
algorithms (KNN, SVM, RF, and ELM). As input from these methods, the
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Fig. 7. The typical response was given by the sensors: (a) samples of stage 1, (b) samples of stage 2, (c) samples of stage 3 and (d) samples of stage 4.
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Fig. 8. Three-dimensional data obtained with 13 sensors: (a) by PCA and (b) LDA.
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Table 5
Results obtained with the classifiers for the dataset with 13 sensors.
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(b)

(b)

Fig. 9. Three-dimensional data obtained with 7 sensors: (a) by PCA and (b) LDA.

Method Validation accuracy (10-fold) Validation Cohen's kappa coefficient (10-fold) Test accuracy Test Cohen's kappa coefficient
KNN (k = 5) 93.32% 0.9112 92.31% 0.8974
SVM 98.54% 0.9805 08.08% 0.9744
RF (nvar = 11) 93.87% 0.9181 96.15% 0.9487
ELM (nhid = 5, actfun = tansig) 78.80% 0.7171 61.54% 0.4872
PCA - KNN (k = 5) 91.02% 0.8801 88.46% 0.8462
PCA — SVM 78.61% 0.7139 76.92% 0.6923
PCA - RF (nvar = 2) 91.24% 0.8824 90.38% 0.8718
PCA — ELM (nhid = 5, actfun = tansig) 78.08% 0.7073 73.08% 0.6410
LDA - KNN (k = 5) 97.92% 0.9721 98.08% 0.9744
LDA - SVM 98.42% 0.9790 98.08% 0.9744
LDA - RF (nvar = 2) 98.47% 0.9796 98.08% 0.9744
LDA — ELM (nhid = 5, actfun = purelin) 89.80% 0.8633 86.54% 0.8205

data obtained by the 13 sensors and the 7 sensors selected were placed.
For each algorithm, the data reduced by PCA and LDA were entered as
input. Tables 5 and 6 summarize the accuracy percentages in the vali-
dation (test with the trained data) and test (black box), for the total and
reduced data, respectively, where nvar is the number of variables
sampled randomly as candidates in each division in the RF method;
nhid is the number of neurons in the hidden layer of an ELM; actfun is

the activation function used in neurons; and k is the maximum number
of nearest neighbors.

These results show that using 7 sensors and no dimensionality re-
duction method as input, all classifiers improved their performances in
relation to the 13, except for the LDA-RF that obtained a slight dete-
rioration for the validation and maintained the hit rate for the set of
tests. Using the PCA as the input of the classifiers, the set with 7 sensors
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Table 6
Results obtained with the classifiers for the dataset with 7 sensors.
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Method Validation accuracy (10-fold) Validation Cohen's kappa coefficient (10-fold) Test accuracy Test Cohen's kappa coefficient
KNN (k = 5) 94.81% 0.9307 94.23% 0.9231
SVM 99.18% 0.9891 98.08% 0.9744
RF (nvar = 2) 94.10% 0.9213 94.23% 0.9231
ELM (nhid = 5, actfun = purelin) 85.29% 0.8034 90.38% 0.8718
PCA - KNN (k = 5) 93.15% 0.9085 02.31% 0.8974
PCA - SVM 81.60% 0.7544 76.92% 0.6923
PCA - RF (nvar = 3) 93.73% 0.9162 92.31% 0.8974
PCA — ELM (nhid = 5, actfun = tansig) 76.03% 0.6793 86.54% 0.8205
LDA - KNN (k = 5) 98.69% 0.9825 96.15% 0.9487
LDA - SVM 99.23% 0.9897 98.08% 0.9744
LDA - RF (nvar = 2) 97.20% 0.9626 98.08% 0.9744
LDA — ELM (nhid = 5, actfun = purelin) 92.96% 0.9059 92.31% 0.8974

obtained a better hit rate for all classifiers, except for the PCA-ELM that
obtained a deterioration for the validation set. With the LDA as input,
there was an improvement in all classifiers for the set of 7 sensors
compared to the 13 (except for the LDA-KNN in the test step), and this is
the LDA for the 7 managed to cluster better than for 13, as shown in
Fig. 8(a) and (b).

Comparing the classifiers for the sets of sensors (7 and 13), the LDA
imputation was better than the PCA and no imputation, because as
shown in Figs. 8 and 9, this method besides reducing the dimension-
ality, facilitates the work for the classifiers. Therefore, the LDA pro-
vided an improvement in accuracy for almost all classifiers, both in the
validation and in the test. Therefore, the LDA, besides improving clas-
sification allows a considerable reduction of the sensor data set, which
is interesting when working with embedded devices and for online
classification.

As previously described, 30% of the sample set was used for testing.
With a total of 52 samples, each of the four stages was left with 13
samples for testing. Tables 7 and 8 show the percentages of test samples
correctly classified for each stage and classifier algorithm in each da-
taset.

In summary, the RF classifier with LDA imputation for the reduced
set of 7 sensors was the one that obtained the best hit rate with 99.23%
in the validation step and 98.08% of the hit in the test step. This de-
monstrates that the initial reduction with the Chi-square test for 7
sensors, the subsequent reduction of dimensionality with the LDA for 3
dimensions and the use of the correct algorithm improves the classifi-
cation rate of the model and contributes to the construction of an ideal
device for the studied application.

As shown in (Benedetti et al., 2008; Huang et al., 2012), and based
on Table 1, during stage 1 (the first days after full bloom), the alcohols
(1-Hexanol, (E)-2-hexenol e (Z)-3-hexenol) are the main components
exhaled by the peach. The aldehydes (Hexanal, (E)-2-hexenal e Ben-
zaldehyde), esters (Hexyl acetate e (E)-2-hexenyl acetate) and acetone
have a stage 2 emission peak and decreases after the onset of Stage 3

Table 7

Percentage of correctly classified samples to the set of 13 sensors.
Method Stage 1 Stage 2 Stage 3 Stage 4
KNN 100% 76.92% 92.30% 100%
SVM 100% 92.30% 100% 100%
RF 100% 84.61% 100% 100%
ELM 61.53% 61.53% 38.46% 100%
PCA — KNN 92.30% 100% 61.53% 100%
PCA - SVM 76.92% 69.23% 61.53% 100%
PCA - RF 76.92% 100% 84.61% 100%
PCA - ELM 76.92% 84.61% 30.76% 100%
LDA — KNN 100% 100% 92.30% 100%
LDA — SVM 100% 100% 92.30% 100%
LDA - RF 100% 100% 92.30% 100%
LDA - ELM 76.92% 92.30% 84.61% 92.30%

Table 8

Percentage of correctly classified samples to the set of 7 sensors.
Method Stage 1 Stage 2 Stage 3 Stage 4
KNN 92.30% 100% 84.61% 100%
SVM 100% 100% 92.30% 100%
RF 100% 76.92% 100% 100%
ELM 61.53% 100% 100% 100%
PCA - KNN 100% 92.30% 76.92% 100%
PCA - SVM 84.61% 100% 53.84% 100%
PCA - RF 92.30% 100% 76.92% 100%
PCA - ELM 84.61% 100% 61.53% 100%
LDA - KNN 92.30% 100% 92.30% 100%
LDA - SVM 92.30% 100% 100% 100%
LDA - RF 100% 92.30% 100% 100%
LDA - ELM 92.30% 76.92% 100% 100%

(day 51 after full bloom). Terpenoids (a-terpinene, y-terpinene e Li-
nalool), as the study in (Visai and Vanoli, 1997) are exhaled at a more
abundant rate at day 61 after full bloom, which already comprises the
third stage of fruit growth. Finally, lactones (y-hexalactone, y-hepta-
lactone, y-octalactone, y-nonalactone, y-dodecalactone, y-decalactone,
8- decalactone, 8-dodecalactone) will be identified only in stage 4, after
80 days of full flowering. Therefore, through the stage of peach growth,
it is possible to identify which VOCs are being exhaled with greater
abundance in each period.

Table 9 compares the results of the related work with that devel-
oped in this paper. It can be noticed that the technique used here (LDA-
RF) allows the reduction of the data set generated by the sensors, be-
sides the highest classification rate of the studies with the objective of
measuring the maturation of the peach fruit.

To compare, the device built here, besides allowing measurements
in the open environment, has a reduced error rate, in comparison to the
other works with electronic noses to measure the maturation of the
peaches found in the literature, since the prototype constructed in this
work obtained a test rate of 98.08% in the best case, against 93% of
Brezmes et al. (2000), 97.56% of Benedetti et al. (2008), and 85% of
Guohua et al. (2012). The methodology adopted by Zhang et al. (2012)
shows a considerable SEP of 8.77.

5. Conclusions

To develop equipment capable of classifying peach growth phases,
the equipment developed with the 13 MOS sensors and the ventilation
system with ambient air was successful in discriminating these phases.
Samples with the four growth stages that were used for the training and
construction of the model prove to be an adequate methodology in the
application of a device for this purpose. Thus, farmers have the possi-
bility of obtaining a robust and low-cost device capable of determining
the harvesting point in the peach trees.

The equipment developed was very promising, showing a good
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Table 9

Summary of the results of the related works of peach maturation.
Objective Techniques used Parameters Reference
Maturity stage at post-harvest ANN Error = 7% (Test) Brezmes et al. (2000)
Maturity stage at post-harvest PCA and CART Error = 2.44% (Test) Benedetti et al. (2008)
Maturity stage at post-harvest PCA and SR Error = 15% (Test) Guohua et al. (2012)
Maturity stage at harvest PCR and PLS SEP = 8.77 (Test) Zhang et al. (2012)
Maturity stage/growth in the orchard LDA-RF Error = 1.92% (Test) This work

sensitivity for the detection of VOCs emitted in the peach environment.
Therefore, rural producers will be able to identify the maturation stage
in a clear and precise way, reducing the risk of fruit losses at undesir-
able maturation stages for commercialization. Therefore, the 180
samples of the 4 stages of growth (from full bloom to harvest), with
99.24% accuracy in model validation and 98.08% in the test using the
LDA-RF classifier and data reducer, for sensors reduced to 7, proves the
suitability of the electronic nose for monitoring areas with an intense
emission of VOCs. In addition, with the idea of creating a generic de-
vice, the step of removing the sensors through Pearson's Qui-Square test
helped in the process of removing attributes that would impair the
performance of the classifiers, since for most of the methods applied
there were improvements in the validation and in the test. Therefore,
depending on the application, different sensors can be removed.

In future works, it is desired to reconstruct the model, training it
with samples of new harvests, new species of peaches, new types of
fruits, besides creating a network topology with several connected
electronic noses and collecting data continuously in several points of
the monitored culture. In addition, to classify the samples in larger
spectra (besides the four phases), applying new tools and algorithms to
have similar accuracy to those obtained in this work.
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